IBM识别癌变细胞技术取得重大突破,用深度学习与神经网络重塑病理学
医生在诊断癌变细胞时,主要通过用活组织切片检查法分析病人组织样本的方式。然而即使这些组织有时如针头般微小,病理学家需要从中检测出肿瘤细胞消失的种种迹象,也要观测出癌变细胞出现的重要特征,以帮助医生对症下药。
病理学家在分析样本时,会将一些典型的组织样本用试剂溶液进行着色标记。结果显示,试剂颜色的深浅及其在细胞组织内的分布情况,能够区分疾病的种类及疾病的恶化程度。
随着近代医学影像技术及深度学习的发展,病理学家们亟需计算机技术的援助,而计算机科学家们也在为之不懈努力。为了验证人工智能技术在医疗领域中的应用效果,科学家们组织了一场黑客马拉松挑战赛。
几个星期前,在乌德勒支大学医学中心、艾因霍芬技术大学、贝斯以色列女执事医疗中心和哈佛医学院的支持下,主办方在希腊雅典进行举办了“肿瘤扩散评估挑战赛”(Tumor Proliferation Assessment Challenge,TPAC),作为 2016 年的 MICCAI 国际会议的一个分会活动。
来自全世界各地的 159 支团队,在活动开展的首日争分夺秒地下载医学院提供的500张乳腺癌细胞图像。作为训练样本,该数据集超过了 50000*50000 像素的分辨率。诚然,这场挑战赛是一场鏖战,直到比赛结束的钟声敲响,也只有14支队伍提交了结果。
其中一支队伍来自 IBM 瑞士实验室和 IBM 巴西实验室。这支藏龙卧虎的国际队伍由法国人,匈牙利人和希腊人组成,共同参与了这界“基于自适应算法的有丝分裂检测难题”挑战赛。竞赛长达数月,经历了整整一个夏天,但是付出终有回报。他们在本次比赛中一举获得第二名,与第一名只差了 0.004 分。
“人工辨认细胞的有丝分裂是一个极其棘手的工作,既然如此,那就交给计算机来解决吧”,David Lanyi 如是说。他在 IBM 工作之前曾在苏黎世理工学院从事深度学习领域的有关研究。
“在今年 7 月,我们开始通过基于神经网络的深度学习算法进行对组织样本的特性进行训练。训练的主要工作是寻找阴性和阳性组织样本的细微差别。在经过一段时间的训练后,机器学习的效果显着。”
Erwan Zerhouni 提道,“在五年前这几乎是一项不可能完成的任务。目前,算法诊断一幅 5600*5600 的图片需要一个小时,在后续的研究中我们可以不断对其进行优化,从而将时间成本压缩到 20 秒以内,同时可以诊断任一种类型的癌症。”
“我们设法结合 MICCAI 最新的深度学习技术来一起迎接针对组学数据(包括基因组学和蛋白质组学)的深入分析,为病人提供更精准的医学诊断。”来自IBM巴西实验室并参与了这一挑战赛的 Matheus Viana 时常在思索这一项目的未来发展。同时,这支团队正准备与 IBM 海法实验室的研究人员共享乳腺癌成像分析的研究结果。
癌症仅仅是 IBM 公司在医疗图像领域研究的一类疾病。 IBM 会员兼医学图像领域专家 Tanveer Syeda-Mahmood 博士了解到该团队的进展计划,并计划与其协作研究,意将深度学习方法引入医学筛研究领域。这对放射学与心脏病学的研究颇有裨益。类似地,在视觉疲劳的研究中,药理学、病理学的专家们经常遇到类似的挑战。Syeda-Mahmood 的研究成果将在下周北美放射学会的年会上展出。(雷锋网)